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ABSTRACT

An optimization algorithm for a multi-echelon model is given which
does not assume convexity. The algorithm employs a bound technique to de-

termine a finite search area. Updating the bound is used to increase the

efficiency.




An Algorithm for Computing Optimum Stock Levels in a Two Level
Maintenance System

Introduction

In general, inventory models are optimized by some appropriate method
which depends upon convexity of the objective function. Thus, differentia=-
tion and difference equation techniques are used to find the conditions for
optimality. Convexity, however, frequently is not seen where there is more
than one decision variable. Nevertheless, optimization assuming convexity
will usually produce nearly optimal values due to the general flat nature
of inventory model equations in the area of the optimum. With this in
mind, an algorithm which assumed convexity for minimizing the total cost in
a two level aircraft maintenance system was used., During observation of the
algorithm it was noticed that small changes in critical parameters some-
times caused large changes in the optimal stock distribution. Even though
these changes actually resulted in relatively small changes to total cost,
the inconsistency of the algorithm was undesirable in view of the time phased
nature of the supply control study in which it would be employed, for over
the time period some or all of the parameters will change. This paper pre-
sents an algorithm developed to find the exact minimal cost distribution
of assets and eliminate the inconsistencies.

For a thorough discussion of the model see reference 1. An almost
identical model developed independently at about the same time as the model
of reference 1 iis discussed in 2. A sufficient description of the model
follows for understanding of the optimization problem.

Both models are concerned with optimizing stock levels of high cost =



low demand reparable items in a two echelon maintenance system. There is

a single top echelon maintenance facility which does overhaul and complex
repair. The lower echelon consists of several units which are capable of
doing non complex repair. Demands for items are placéd upon the lower
echelons. When an item is demanded it ig accompanied by the return of a
failed item. The item can be repaired af the lower echelon with a probability
f and it can be repaired at the top echelon with probability 1-f,

For this class of items the optimal policy at lower and top echelons
is of the form (S,S-1). Demands are assumed to be compound Poisson at each
lower echelon unit. Under these assumptions an analytic formulation is
possible.

The objective function to be minimized is

N N
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i=o i=1

where

S = top echelon spares

o
Si = spares at unit i of lower echelon
A; = average failures per day at unit i
fi = percent of total failures repaired at unit i
. . th ,
Tir= repailr time at i unit
. . th ,
Tis= replenishment time for i “unit
Wo = average wait for stock at top echelon
Bi = average backorders at unit i

Ch = holding cost per spare per year

Cb = backorder cost per spare per year
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Notice that

N
TC(S_,8) = C, S + }J (CyS; + CB (5 Ngo£i5T, W )]
i=1
or
TC(S_,8) = C, S + TCA(S_,8)

where TCA(SO,§) is total lower echelon cost given a top echelon stock
of So’ and lower level stock vector § =(Sl’ SZ’ e o @ Sn)

Any given S0 establishes the value of the parameters of the inventory
level probability distribution which are used to compute Bi('). With
parameters fixed, Bi(-) is a convex function over Si' Thus, minimization
of TCA(So,g) can easily be done. This is the basic computational feature

on which the algorithm rests.

Mathematical Basis i

Before presenting the algorithm the following theorems need to be
proved.

Theorem 1. If Sg is the top echelon stock at an optimum, a necessary
condition for optimality is that TCA(Sg,g) be minimized with respect to

8= (s, 8 . S)

22 ¢ n
Proof. Let S* be the vector of lower echelon stock levels which

minimize TCA(Sg,g) and S' be any other stock level vector. Now

TC*, the optimum cost is
TC* = C, 8% + TCA(S%,8%) < C_S% + TCA(8%,8")

Thus, S' cannot minimize total cost.



Theorem 2. Let S*(j) denote the vector of optimum lower echelon stock

levels when So is j. Then
S*¥(k) < S*(j) if j <k

Proof. Since each Si is determined independently it is sufficient
to show that any S?(k) < Sf(j), i=12, .. .N

When j < k the mean of the compound Poisson distribution of items in
the pipeline is greater for S0 = 3 than for So = k. Let y(j) be the mean
for S0 = j. Then p(j) > p(k). The condition for optimality at a lower

echelon unit is

mewsisP@m

%

where
o

PS/u) =z P(j/u)

j=s , ®

and p(j/u) is the compound Poisson probability. Now P(S/u(k)) < P(S/M(j))
and the optimality condition cannot be satisfied with a larger S if ,(j) > u(k).

Theorem 3, Let TCA(j,S*(j)) denote optimum lower echelon cost when So= j
Then TCA(j,S*(j)) > TCA(k,S*(k)) if j <k
Proof. Lét S*(j) be vector of optimum lower echelon stock levels when
SO is j.
Now TCA(j,S*(3)) > TCA(k,$*(j)0 = TCA(k,S*(k))

The first inequality follows from the fact that backorder cost is reduced

when top echelon stock is increased. .



Theorem 4. Let TC be any total cost and TCA(w,S*(«) be the optimum
. lower echelon cost when top echelon stock is infinite (eliminates Wo). Then

' an upper bound

b = [(TC-TCA(@,§#(¢)))/Ch] on top echelon stock can be
established such that Sg < b.

Proof. TC & TC* = C sg + TCA(S*,§ﬁ(Sg)) >C

) * 5% + TCA(=, 5% (=)

Therefore

[ (TC-TCA(=,8%(=)))/C, ] = S*

where [x] denotes the largest integer = x

A verbal proof of the above is that if you must spend at least
TCA(»,S*(»)) (TCA(é,gﬁ(m)) is a lower bound on lower echelon cost) and an
allocation has been found which costs TC, then why spend any more on upper
level inventory than TC - TCA(w,S*(»). There are two features to the com-

‘ putation of this bound which enable recomputation to find a possible smaller

upper bound. Suppose an initial upper bound b1 has been found. Then by
Theorem 2 we know the 1ea$t cost at the lower echelon will be TCA(b1,§#(b1)).

Thus a new bound, b, = {TC - TCA(b1,§#(b1)))/Ch] can be computed.

2

Likewise, a b, can be calculated as b3 = [(TC-TCA(b2,§?(b2)))/Ch].

3
This continues until there is no change in the bound. Another source of
improvement is from new allocations which reduce TC. Thus each time a lower
TC is found the bound is recomputed.

The measure of efficiency for any optimation algorithm is the time it
takes to find the optimum. In coding the algorithm for a computer we were
concerned therefore with time and not necessarily the efficiency of the

bound. The bound should be reduced only if the computational time in reducing

the bound results in at least as large a saving in other computer time.

“I' 7



Quickly, it was learned that the first means described for reducing the
bound cost more than it returned. The test algorithm only employed the
second method. Appendix A gives a listing of the coded algorithm which was
run on a time sharing system (Com-Share) in the XTRAN language. A narrative
description of the algorithm follows.

The Algorithm

Step 1. Set So = 0 and find TCA(0,5%(0) by incrementing the lower
stocks independently until a minimum is reached. Set
TCA(0,8*(0) equal to current minimum, CM, and save stock
distribution.
Step 2. Set upper echelon backorders to 0 and find TCA(w,8%(=))
Step 3. Set bound, b = [(TCA(0,5*(0)) - TCA(oo,g_*)))/ch]
Step 4. 1f So = b go to Step 7
Step 5. Increment Soby 1 (Say SO= j) and find TCA(j,S$*(j)). Compute
TC(3,8%(3) = €, *3 + TCA(I,5*(1)) | |
Step 6. If TC(j,S*(j)) < CM,set CM = TC(j,S*(j)), save stock distribu-
tion,‘récompute
b = [(TC(j,8*%(3)) - TCA(“,§?(W)))/Ch], and go to
Step 4.
Step 7. Output optimal stock distribution and average backorders at
optimum.
Step 8. Stop.
The algorithm must pass through the minimum cost point. Whereas if
the TC(j,5*(j)) were convex an optimization procedure could stop after ex-

amining only one additional point beyond the optimum, this algorithm must

8



examine several until the bound is reached. Oné way of judging the effective-
ness of the algorithm is by the number of additional points it must examihe
beyond the optimum before stopping. In testing of the algorithm over a rather
wide range of conditions it was found that the final bound established was
always close to 10% greater than the upper echelon stock at minimum. This

was considered to be good.

Notice that to insure reaching the exact optimum, all possibilities of
upper echelon stock up to the bound must be examined. Were the function
convex, more efficient methods of converging to the optimum could be used.

A substantial amount of computing spped is being lost to insure achieving
an exact optimum, which in turn insures a consistent solution pattern when
parameters are varied. Consistency, however, was an overriding consideration.
The algorithm is being used in a supply control study to find the optimum
requirements over a 5 year time span. Characteristically, some parameters
will display slight changes over the 5 years. The optimum requirements
solution should display a logically changing characteristic depgnding upon
the parameter changes. If the solﬁtion were to change substantially (this
can happen ﬁith little change in total cost) a good procurement schedule
would be impossible. Moreover, management would have little faith in the
solution if it were to change significantly without logical justificationm.

This version of the optimizing routine 1s not considered to be final.
Additional research will be domne to make the scheme more efficient by re-

ducing the number of required computations.
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APPENDIX A
LISTING @F COUING FOR THE ALGORITHM

SUBRBUTINE QPT(UTL,UL,SLTL,NB,AMT,EVAC,AMDAL,CGMUP:ACUP;INV,WGPT)
REAL NSHIGH,NSLEW

COMMON/Z ID/ANAME , DATE

COMMBN /ALLOC/ MMy NR,BACKD

DIMENSIZN AMTINS) »EVACINBI>NR(25)>NRUPT(Z25)

ANAME=4HEPT

DATE=6H092669

NSTART=0

BAVG=UTL

NTAT=0

BTAT=0.0

LY 20 I=1,NB

AMEAN=AMTCI)+B8AVG/UL*EVAUCI ) NSTART

BACKAR=AMEAN

COASTAR=ACUP*BACKAR

NKAK=0

3ACKAL=BACKAR

CasTAL=COSTAR

NRAR=NKAR+1

BACKAR=BNAF (AMEAN » NRAR)D '
IF(BACKAR.LE.OYPAUSE "INC AREA * BACKAR=", #BACKAK
CASTAR=ACUP*BACKAR+CIMIP*NRAR

IFCCOSTARSLTCOSTALYGE TG 10

NRCI)=NRAR-1

BT3T=BTO T+3ACKAL

NTAT=NTOT+NR(I)D

IF(NSTART.EQ.1)2G8 T2 21

NSLAW=COMUPKRNTAT+ACUPxBTAT

NSTART=1 ‘
G T3 5
MY=0
NSHIGH=COAMUPRNTYT +ACUPX*BTYT
CUST=ACUPXBTOT+COMUP*NTYT

COSTMN=0COST

MMAX=INT CINSHI GH=NSLLO WY/ CaMUP)

MM=MiM+1

HAV G=BNAP CUTL »MM)

NTUT=0

BT2T=0.0

P33 50 I=1,NB

AMEAN=AMT CI)+BAVG/ULXEVAC (I

NRAR=NRCL)

BAUKAR=BNAP (AMEZAN ,» NRAR)

IF CBACKAR.LIKNIPAUSE SINC NICP * BAUKAR=$5,BACKAK
CASTAR=ACUP *BACKAR+CUMUP*NRAR

NRAR=NRKAR-1

BAGKAL=BACKAR

CASTAL=CUSTAR

i
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60

LISTING UF CODING CONTINUED

IFI(NRARCLT0YGD TO 45
BACKAR=BNAP (AMEAN > NRAR)
UASTAR=ACUP*BACKAR+COMUP %NRAR
IFCCOSTARCLTSCOSTAILLYGY T¥ 40
NRCII)=NRAR+1

NTBT=NT2T+NRCI)
STdT=8TOT+B3ACKAL
CAST=ACUP*BTAT+COMUPK(NTBT+MM)
IFCCAST «GELCOASTUMNIGE TY 60
COSTMN=C@ST

NTOGPT=NTYT

MIP T=MM

HOPT=BTOT

FUR I=1,Ni3s NRIPTCID>=NRC(I)
MMAX=INTCCCHST-NSLDW) Z7CoMUP)
IFMM.LT.MMAX) GO T@ 30

FEUR [=1,NBt NRCI)=NROPTCL)

M =mMaPT

NTOT=NTZPT

INV=(M+NTAT

BACKG=BUPT

HWAP T=BACKJ/AMDAL

RETURN

END
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